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COMMENT 

Random walk in a percolation cluster: external field 
dependence 

T o o  Lee, Eo Chul Kim and jmg-jean Kimi 
Physics Department, Korea Advanced Institute of  Science and Technology, PO Box 150, 
Chongyangni, Seoul, Korea 

Received 3 September 1990 

Abstract. Random walk in a ?ercolation C!GS!PY "BS s!cdied i n  !hp simu!l!~~pouj ?pg!icp!ion 
of both DC bias and AC driving fields by Monte Carlo calculations. Amplitude and phase 
shift of the random walk response to the  external field of E,,+ B ,  sin W I  were calculated 
as a function of B , ,  w and E,,. Some new observations are made, which cannot be expected 
simply from the linear superposition of the two separate results far a constant bias field 
( B o )  and an AC driving field ( B ,  sin W I )  respectively. 

1. Introduction 

Diffusions in the percolation clusters under constant bias fields have been studied by 
many research workers both theoretically (Barma and Dhar 1983, Ohtsuki and Keyes 
1984, White and Barma 1984, Goldhirsch and Gefen 1987) and numerically (Pandey 
1984, Seifert and Suessenbach 1984, Stauffer 1985, Bunde er a /  1987). 

wirn a constan! iieid appiied on ihe percoiation ciusrer the random waik particie 
was observed to show a diffusion-like dynamics at short times hut a drift-like one at 
long times when the bias field was kept smaller than a characteristic value B, (Pandey 
1984, Stauffer 1985). 

When the bias field becomes time-dependent the random walk particle in the 
percolation cluster shows a nonlinear response, which is attributed to competition 
VGLWGCLI L W U  u p p u w u ~  GU=LLJ V I  uiiii niiu ~~appuag (nniucr ri U I  ,?lo", n a v u i i  aiiu 

Ben-Avraham 1987). 
Trapping of the random walk particle at dangling bonds tends to reduce the 

root-mean-square displacement ( x ( f ) )  and counteracts the drifting of the particle given 
by the applied field. 

In our present work we want to study the DC bias field effect on the nonlinear 
behzviours of the rat?dom walk responses in the percol~tion c!uster ~?nder the ti-e- 
dependent applied field. 

..,... 
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2. Random walk in a percolation cluster 

In the uniform regular lattice structures the root-mean-square displacement ( R ( r ) )  of 
the random walk particle under the time-dependent field of the form E (  f )  = B, sin w f  
is given by (Harder et a/ 1986) 

( R ( t ) )  - A{sin(of  - $) + AI ( 1 )  

t Author to wham correspondence should be addressed. 
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where A(-B,/w) represents the response amplitude, $(=?r/2) the phase lag and 
A(=l) the field-independent background. A random walk in the percolation cluster is 
characterized by the anomalous diffusion described as (Ben-Avraham and Havlin 1982, 
Gefen et ol 1983) 

J W Lee et ol 

( R2(  1 ) )  - t" (2) 
where (R') is the mean-square displacement with k c f .  

The mean-square displacement ( R ' ( t ) )  becomes dependent on the field when a 
constant field is applied in the percolation cluster (Pandey 1984, Stauffer 1985). 

Conductivity u ( w )  of the random network is given by (Scher and Lax 1973) 

u(w)--w21im exp(-iwf)exp(-~r)(R'(t))dt (3) 
7 - 0  Jo" 

where ( R 2 ( t ) )  is the mean-square displacement of the random walk particle. .. , w e  thus 'nave from <2) and (3j  

From the Fourier transform relations ofj(o ')-u(w')B(w'),  B(w')=B,S(w-w') and 
also j ( t )=d(x( t ) ) /d t  the linear response theory gives (Harder et al 1986) for the 
response amp!i!cde A < & ,  e) and phzse shift 4: 

A ( B , ,  w )  - B , w - ~ ~  (5) 
q5 = k?r. (6) 

Although both DC bias (Pandey 1984, Stauffer 1985) and AC field (Harder er al 1986, 
Havlin and Ben-Avraham 1987) effects on the random walk have been studied separ- 

application of both DC and AC fields since the DC field is expected to change both 
drifting and trapping dynamics. What is more, a strong AC field may also give rise to 
the nonlinear dynamic drive of the random walk particle in the percolation cluster, 
when a slightest possible change of initial conditions may give a drastic change in the 
response. 

a!e!y; i! is not ohvious m see the random wa!k dynamics in !he case of simu!!aneous 

3. Monte Carlo results and discussion 

A Leath algorithm (Leath 1976) was used to generate a two-dimensional percolation 
cluster of p = 0.594 up to 100 shells. Both DC and time-dependent fields are applied 
simultaneously in the form of E(  I )  = E,+ E, sin wt with the field direction along the 
xy diagonal. Monte Cario methods are employed to caicuiate the root-mean-square 
displacement ( x ( t ) )  and the response amplitudes A from the peak to valley amplitudes 
of ( ~ ( 1 ) ) .  For each percolation cluster generated we have taken 500 local-origin averages 
and 10 configuration averages. The transition rate W between neighbouring sites r and 
r'( = r + 6) was taken as 

.., r o + B ( w  f o r S = ( l , O ) o r ( O , l )  
W c r + r i = l ( l  -B( t ) ) /4  for 6 =(-1,O) or  (0, -1) 

with I B ( t ) l ~ l .  
With no constant bias field, B,, = 0, and only the time-dependent field applied we 

could reproduce the same results of the root-mean-square displacement ( x ( t ) )  as those 
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of Harder e! a1 (1986) which show the nonlinear effects with respect to the amplitude 
B ,  and frequency o of the applied field. In figure 1 we have shown the (x( I ) )  dependence 
on f at various B ,  values for fixed values of B,=O.l and w =0.02. At B ,  = O  (x(!)) is 
seen to reproduce the result of the DC bias field in agreement with the previous results 
(Pandey 1984, Stauffer 1985). At B, = Bo=O.l we can observe a strong effect of the 
DC bias field. However, as the AC field become3 much stronger the DC bias effect 
appears suppressed and a very strong nonlinear response can be observed at B, = 0.9. 
In figure 2 the AC response amp!i!ude A ef !x!!)) is shewn 2s a fcnc!lon t$ Bi  z! 
various frequencies for fixed value of B,=O.l. The response amplitude A is seen to 
increase with increasing B ,  until reaching the crossover field BT where the response 

0 so0 1000 im 2000 
-5 

time 

Figure 1. (x(I)) of  a random walk panicle in the external field of Bo,+ B ,  sin W I  at selected 
values of 8, with Bo= 0.1 and w = 0.02 fixed. The dotted line represents sin 01. 

applied a.=. field amplitude B, 

Figure 2. Plot of A ( B , : w ,  E,,l as a function of B, for a constant bias field S,,=O.l and 
various values of w from 0.005 (0) to 0.8 ( X I .  
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amplitude A starts to decrease with further increasing E , .  This crossover field Bf of 
the maximum response amplitude seems to increase with increasing frequency and  DC 

bias field E,, although the overall amplitude diminishes with increasing frequency. At 
an extreme case of w =0.8 the response amplitude A is seen to continue to increase 
very slowly as E ,  is increased with no sign of the crossover field Bf observed. This 
crossover field phenomenon of nonlinear response is derived from the competing 
interactions between drifting and trapping (Harder el a/ 1986, Havlin and Ben-Avraham 
1987), both of which are affected by  the DC bias field. When the frequency w of the 
AC field increases the attempting frequency of escape from the dangling end traps is 
expected to increase. In figure 3 we have shown the phase shift 141 of ( ~ ( t ) )  as a 
function of the AC field amplitude E ,  at various frequencies w for a fixed DC bias field 
of B,=O.l. At lower frequencies the  phase shift 141 is observed to decrease rapidly 
with increasing field amplitude E , .  However, at higher frequencies the phase shift 
dependence on 5,  becomes much slower, and  a t  an  extreme of w = 0.8 we can see that 
the phase shift hardly depends o n  E ,  with convergence to + = k n  In figure 4 the 
frequency dependence of the random walk response amplitude A is depicted for various 
values of E ,  and Bo=O.l. In  the frequency range below w =0.05 the random walk 
response amplitude A is seen to decrease with increasing frequency w for all values 
of B , .  At each given frequency the  response amplitude A can be seen to increase 
significantly with increasing field amplitude 5 ,  of the applied AC field a t  lower fields 
less than E ,  = 0.5 but does not depend very much on the field amplitude E ,  at higher 
fields above E ,  = 0.5. This nonlinear effect on the random walk response amplitude A 
at higher applied fields above E ,  = 0.5 conforms with the results of figure 1 where 
( ~ ( 1 ) )  shows the nonlinear response at the AC field amplitude of 5,  =0.9. In figure 5 
the applied AC field ( E , )  dependence of the random walk response amplitude ( A )  is 
shown for various DC bias fields (Bu) a t  a fixed AC frequency of w =0.02. At lower DC 

bias fields less than 5,=0.2 we can see that the response amplitude A shows the 
crossover nonlinear behaviour with a large crossover field Bf at a higher DC bias field. 
The DC bias field tends to reduce the overall random walk response amplitude A. It 
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Figure 3. Plat of  phase shift (Iml) as a function of 8 ,  for a constant bias field B,,=O.I and 
various vaiues of w from 0.005 (0) to 0.8 ( X I .  
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Figure 4. Plot of A ( w ;  Bo, B , )  as a function of w for a constant bias field B,=O.l and 
various values of AC field amplitude B,  from 0.1 (0) to 0.9 (MI. 

a.=. field amplitude BI 

Figure 5. Plot of response amplitude A(B,  ; w, B,J as a function o f  AC field amplitude 8 ,  
far a constant frequency w = t o 2  and various values of  IX bias field B,, from 0.0 (0) to 
0.6(.). Note the boundary condition of B,,+B, = 1. 

can be seen also that at strong DC bias fields above Bo = 0.4 the functional dependence 
of the response amplitude A on the AC field amplitude B ,  in the region below B, =0.4 
changes to be quadratic as compared with the linear dependence at smaller DC bias 
fields below E ,  = 0.2. 

4. Conclusion 

The DC bias field effect on the random walk response to the AC applied field in the 
percolation cluster may be classified into two characteristically different regimes with 

b 
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respect to the frequency w and amplitude B, of the AC field. In  the linear regime where 
the phase shift 4 is negligible or converges to a constant value, the DC bias effect is 
equivalent respectively to an increase or a decrease of the AC field amplitude E , .  
However, in the nonlinear effect regime where the phase shift 4 strongly depends on 
the AC field amplitude ( B , ) ,  the DC bias field (E,) effects become no longer equivalent 
to the simple enhancement or reduction of the AC field amplitude. 
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